Closing Thurs: $\quad 3.9$
Closing next Tues: 3.10
Closing next Thurs: 4.1(1), 4.1(2)
Remember: Friday is a Holiday (no class)

Entry Task (2016 Midterm Question):
Two carts are connected by a rope 15 ft long that passes over a pulley P. The point Q is on the floor 4 ft beneath P.
Cart A is being pulled away from Q at a constant speed of $2 \mathrm{ft} / \mathrm{s}$.
(a) Find the rate at which θ is changing when cart A is 3 ft from Q.
(b) How fast is cart B moving when cart A is 3 ft from Q ?

3.10 Linear Approximation

Idea: "Near" the point $(a, f(a))$ the graphs of $y=f(x)$ and the tangent line

$$
y=f^{\prime}(a)(x-a)+f(a)
$$

are close together.

We say the tangent line is a linear approximation (or linearization or tangent line approximation) to the function. Sometimes it is written as

$$
L(x)=f^{\prime}(a)(x-a)+f(a)
$$

In other words:
If $x \approx a$,
then $f(x) \approx f^{\prime}(a)(x-a)+f(a)$

Example: Find the linear approximation of $f(x)=\sqrt{x}$ at $x=81$. Then use it to approximate the value of $\sqrt{82}$.

Example: Find the linearization of $g(x)=\sin (x)$ at $x=0$. Then use it to approximate the value of $\sin (0.03)$.

Example:

Using tangent line approximation
estimate the value of $\sqrt[3]{8.5}$.

Example: (Newton's Method) Consider $f(x)=e^{x}-4 x$. From the graph, note that

$$
e^{x}-4 x=0
$$

has one solution "near" $x=0$.
Find the linearization at $\mathrm{x}=0$, and use it to approximation this solution.

Some Homework Hints:

Problem 10: Suppose that a and b are pieces
of metal which are hinged at C.

By the "law of sines," you always have:

$$
\frac{b}{a}=\frac{\sin (B)}{\sin (A)}
$$

At first: angle A is $\pi / 4$ radians $=45^{\circ}$ and angle B is $\pi / 3$ radians $=60^{\circ}$.
You then widen A to 46°, without changing the sides a and b.
The question asks you to use the linear approximation to estimate the new angle B.

Problem 8:

A cone with height h and base radius r has total surface area S given by:

$$
S=\pi r^{2}+\pi r \sqrt{r^{2}+h^{2}}
$$

You start with $h=8$ and $r=6$, and you want to change the dimensions in such a way that the total surface area remains constant.

Suppose the height increase by $26 / 100$.

In this problem, use tangent line approximation to estimate the new value of r so that the new cone has the same total surface area.

